
LOBSTER: Limit Order Book Reconstruction System∗

Ruihong Huang†

Humboldt-Universität zu Berlin

Tomas Polak ‡

Humboldt-Universität zu Berlin.

December 27, 2011

Abstract

The rise of order-driven markets in recent years created considerable challenges for re-

searchers, who have to cope with extremely large amounts of data produced daily by the

markets. It is our goal to spare academic researchers the tedious task of technical pre-

processing of the data and thus enable them to focus on economic research. Our order book

reconstruction system LOBSTER is based on the generalized order-processing algorithm

common for majority of order-driven markets and so it is easily adjustable to process data

produced in any order-driven market. Efficient data structures result in very convincing

performance, with large datasets produced on the fly. Currently LOBSTER uses ITCH

data from NASDAQ to accurately replicate the limit order book for any NASDAQ-traded

stock to any desired level. Data from more venues will be added in the future. The system

is accessible via the Internet, which makes it very convenient for researchers from around

the world.

Keywords: Limit order market, Message data, High-frequency data

JEL classification: C88

1 Introduction

An electronic limit order market is an order-driven market which automatically collects orders

from traders in a centralized limit order book (LOB) and matches corresponding buy and sell

orders based on specific priority rules, very often the price-time priority rule. Currently, most

∗For helpful comments and discussions we thank the entire LOBSTER development team: Jonas Haase,

Gustav Haitz, Nikolaus Hautsch and Gagandeep Singh. Created with strong support of Research Data Center

at CRC649: Economic Risk.
†Institute for Statistics and Econometrics, Humboldt-Universität zu Berlin. Email: ruihong.huang@wiwi.hu-

berlin.de Address: Spandauer Str. 1, 10178 Berlin, Germany.
‡Research Data Center at CRC649: Economic risk and Institute for Statistics and Econometrics, Humboldt-

Universität zu Berlin. Email: polaktox@wiwi.hu-berlin.de.

1

equity exchanges around the world are either pure electronic limit order markets, e.g. NYSE

Arca, BATS, Euronext, Australian Stock Exchange (ASX) and Direct Edge, or at least allow

for customer limit orders in addition to on-exchange market making, e.g. NASDAQ, NYSE and

the London Stock Exchange (LSE). The traditional monopolistic power of market makers in

the area of liquidity provision through quoting on both sides of the market has been strongly

restricted, if not completely eliminated. Instead, the important task of providing liquidity is

now assigned to the complex trading interactions enabled by the emergence and disclosure of

the LOB. Hence, the state of the LOB is extremely important for practitioners, because it allows

them to optimize their trading strategies, but also for researchers who analyze trading activity

in these markets and try to interpret the underlying economic motivation.

One of the most prominent market structure developments in recent years is high frequency

(“HF”) trading. HF traders in general employ extremely quick and sophisticated computer

programs for generating, routing and executing orders. They establish and liquidate positions

in very short time-frames by submitting numerous orders and cancelling non-executed orders

shortly after submission. As a consequence, the trading volume grows, orders shrink in size

and the pace of LOB updating is beyond human perception, requiring nanosecond precisions.

The volume of information about orders recorded by market organizers therefore dramatically

increases.

More than ever before researchers today face the challenge of working with real datasets

on micro-structure level of financial markets. They are in general not difficult to obtain, but

very difficult to process. One way of going about it is acquiring snapshots of historical LOB

data. But this is very impractical, because such datasets are usually very large and contain

only incomplete information1. The second option is to acquire much better compressed raw

message stream data, like TotalView-ITCH and Multicast PITCH data. Because message data

record all visible order activities, i.e. limit order submissions, cancellations and executions, they

can be used to reconstruct the historical LOB up to any required precision (level). However,

this creates a different type of challenge; it is necessary to reconstruct the LOB using the same

rules that were used by the matching algorithm applied by the exchange. Although simple in

principle, such algorithms need to take into account market-specific issues and, considering the

large volume of data, work extremely efficiently.

In this paper, we present you the LOBSTER, a program framework for reconstructing LOBs

as well as extracting order flow information from historical message stream data. Note that the

fundamental limit order activities are quite similar across different limit order markets, though

the specific trading rules can be very different. We modularize LOBSTER to processes limit

order activities translated from messages instead of messages themselves, so that it can be easily

adapted to data from new limit order markets with just a few modifications. The underlying

data structure in these modules is highly optimized and their programs are exhaustively tested

1Snapshots are made at regular time intervals, e.g. every second, which means that multiple changes within

this time intervals may be omitted. Should snapshots capture all changes in the LOB to all levels the size of

files to store these datasets would be too large for practical purposes.

2

to guarantee the reliability of the output data and the efficiency of the entire system.

Currently we implement a translation module for NASDAQ TotalView-ITCH message and

a web-based interface. Researchers around the world can easily access our program through

http://lobster.wiwi.hu-berlin.de and download NASDAQ LOB data reconstructed on

the fly. Moreover, a related forum facilitates general discussion on empirical analysis of LOB,

as well as bundles of small programs and useful tools in both R and Matlab.

The remainder of this paper is structured as follows. In Section 2, we take the NASDAQ

TotalView-ITCH as an example to illustrate the structure of order-related messages in message

stream data. Section 3 gives the overview of the design of the LOBSTER. We discuss in detail

on two implemented modules, the LOB Constructor and the Order Tracer, in Section 4 and 5,

respectively. Finally, Section 6 concludes.

2 Message Stream Data

As we already discussed above, unlike historical snapshots of the LOB, message-type data allow

reconstructing the full LOB and observing its dynamics with maximum precision. This is indeed

extremely valuable for academic research, giving the possibility to study all aspects of trading

in full detail. In this section, we will take the NASDAQ TotalView-ITCH 4.0 as an example to

illustrate the structure of messages.

The original NASDAQ TotalView-ITCH is a direct data feed that contains market messages

for all submissions, cancellations and executions of limit orders, as well as executions of hidden

orders. TotalView-ITCH 4.0 data is the binary version of the TotalView-ITCH data introduced

in November 2008, following the ITCH 3.0 format. This format is ready for nanosecond time

stamps2 and contains longer order and trade identification numbers allowing to mark up to 18

quadrillion messages per day.

Considering the enormous number of messages generated by the activities in markets every

day, the TotalView message stream is designed to present information in a parsimonious way,

reducing redundancy in the records. Table 1 illustrates the message types related to the instruc-

tions carried by orders. Whenever a market participant submits a new order, its details, such as

order ID, limit price and size, are recorded in a submission message. If the market participant

chooses to reveal her identity to other market participants the submission message contains also

her Market Participant Identification (MPID). All subsequent changes to the submitted limit

order are also recorded in the form of messages; messages reporting partial cancellations or

executions (partial or total) contain the same order ID as the original submission messages and

the cancelled or executed quantity. If the limit order is totally cancelled (deleted), TotalView

records only the corresponding order ID. Finally, messages reporting executions of hidden or-

ders contain only the price and the executed quantity, but not the total size of the originally

submitted hidden orders.

2The time resolution of trading in NASDAQ is still in milliseconds. Therefore, the time stamps in the current

data set have still millisecond precision rather than nanosecond.

3

Figure 1: A sequence of messages related to the same limit order. The first part of each message contains

information about the length of the message. The second part is the message type. Time stamp messages

“T” record the number of seconds after midnight. The third part of messages (except for time stamp

messages) contains the time in nanoseconds since the last time stamp message. The fourth part is the

order ID. For type “A” messages, the remaining fields contain: trade direction (buy/sell) indicator, order

size, stock ticker, limit price. Type “E” messages further contain information about the executed size

and a unique matching number.

4

Table 1:

TotalView-ITCH: order-related messages.

TotalView-ITCH includes messages representing submissions, executions and cancellations of limit

orders, as well as executions of hidden orders. A submission type limit order message may or may not

contain information identifying the market participant, who submitted the order - Market Participant

Identification (MPID). A type “P” message reports the execution price and immediately traded quantity,

i.e. only that part of the hidden order, which is currently being executed against an incoming order.

Thus no information about the remaining unexecuted part of the hidden order is revealed.

Instruction Type Limit/Hidden Order Canc./Exe.

ID Price Size MPID size

Limit order submission A X X X

Limit order submission with MPID F X X X X

Limit order execution E X X

Limit order cancellation (partially) X X X

Limit order cancellation (totally) D X

Hidden order execution P X X X

However, this parsimony raises challenges for researchers who intend to use TotalView mes-

sage data. Most messages contain only incomplete information for the corresponding order.

Figure 1 illustrates a sequence of messages related to the same limit order. Only the “A” mes-

sage, which carries information about limit order submission, contains information about limit

price, size and trade direction of the limit order. Therefore, before type “E” or “D” messages

can be used by the algorithm to update the LOB, we need to “trace back” the corresponding

“A” message to retrieve the information. Note also that ITCH records time stamps in two parts.

The first part of a time stamp is carried by a type “T” message, which records the number of

seconds after midnight. The second part is the number of nanoseconds since the last recorded

second, recorded in the third position of each message.

Compared to the Trades and Quotes Database (TAQ) released by NYSE, which contains

the best quotes and the corresponding depths, message data has richer information. It records

order activities, which pooled together comprise the quote prices and depths. Thanks to this

superiority of information content message data can be used to reconstruct the LOB up to any

quote level. But even when looking only at the best quote and depth, message data is richer

than the usual data obtained from the TAQ database. Message data contain information about

limit orders which are cancelled shortly after the submission. These limit orders are typically

submitted in order to detect hidden liquidity inside the spread rather than to provide liquidity

(see e.g., Hasbrouck and Saar, 2009). Therefore, it is not surprising that TAQ ignores them as

shown in Figure 2. However, these orders are crucial for some studies, e.g the analysis of high

frequency trading strategies and hidden order submission strategies.

The currently implemented LOBSTER is connected to a storage facility containing over

5 TB of historical TotalView-ITCH data, in ITCH 3.0 format from the period Jan 2007 to

Apr 2009 and ITCH 4.0 format from the period May 2009 to Dec 2010. This dataset contains

5

40000 40020 40040 40060 40080 40100 40120 40140

42
5.

5
42

5.
7

42
5.

9

Time stamp

T
he

 b
es

t a
sk

LOBSTER
TAQ

40000 40020 40040 40060 40080 40100 40120 40140

0
10

0
30

0
50

0

Time stamp

D
ep

th
 a

t t
he

 b
es

t a
sk LOBSTER

TAQ

Figure 2: Comparison of TAQ and one-level LOB generated by LOBSTER. The time stamp is the

number of milliseconds after midnight.

6

Figure 3: The overview of LOBSTER system. Three types of modules are used in general. Readers

(green) read the source data into the system; data Processors (purple) retrieve the information; Writers

(blue) write the output into the file system. For the sake of flexibility Readers and Writers are normally

implemented as interfaces.

only limit order messages. Other messages such as imbalance data events and administrative

messages have been cleaned out.

3 Overview of LOBSTER

The main goal of LOBSTER is to provide a reliable, efficient and flexible platform for researchers

to retrieve information from parsimonious message data. Relying on the object-oriented concept,

we designed LOBSTER as a modular system with three types of modules: Readers(green), data

Processors(purple) and Writers(blue) as shown in Figure 3.

Reader translates data from an external source to a stream of order events, which is then

processed by data Processors. Based on a unified abstract interface, different readers can

be created for reading different input formats, e.g. from different stock exchanges. But

also an order-flow simulator can act as a “Reader”, provided that the generated data have

the required format. Currently the system contains an ITCH message Reader for reading

binary ITCH files from the storage facility and a test version PITCH Reader for BATS.

Data Processor is the core of the system responsible for extracting the information required

by users from the order flow generated by Reader. Connected to Reader by an abstract

interface, the data Processors treat historical order flow, simulated order flow or hybrid

order flow identically. This creates great potential for very effective testing of trading

strategies.3

3For instance, it is well-known that the back-testing of trading strategies on historical data has a very serious

drawback - there is no market feedback to the tested strategy and so it is very hard to estimate the market impact

of the strategy. In this context, testing with a simulator allows implementing realistic feedback mechanisms to

simulate market impact and thus provide credible assessment of the tested trading strategy.

7

We implemented a LOB Constructor that matches the limit orders coming from the

Reader and updates the LOB. The accuracy and efficiency of this algorithm determine to

a large extent the overall performance of the system. For this reason it was thoroughly

tested and optimized. We shall discuss the currently implemented LOB Constructor in

Section 4.

Moreover, we have also developed Order Tracer, whose beta version is currently being

tested. Order Tracer traces relevant events for individual limit orders, such as the time

of submission, partial/full execution and cancellation. It has been used for computing the

lifetime of limit orders for some research projects (e.g. Hautsch and Huang, 2011a,b). We

expect that in the near future more and more utilities for special research purposes will

be added to the current framework.

Writer receives the reconstructed data and saves them to the file system. Currently the sys-

tem contains four Writers; the Message Writer, which saves the event type and the

corresponding order information into the file system, the Book Writer, which receives

the current state of the reconstructed LOB for every order event and saves it, the Order

Writer, which saves the characteristics (order ID, limit price, size, etc.) of limit orders,

and finally the Trace Writer, which saves event-specific information, such as the event

time, submission time and the type of order event, as generated by the Order Tracer.

4 Limit Order Book Reconstruction

4.1 Overview of the Reconstruction Procedure

Figure 4 summarizes the procedure of the LOB reconstruction. For arriving messages identified

as limit order submissions, the system records in the order pool all relevant information including

order ID, limit price, quantity, trade direction and MPID, if available. Once a cancellation

or execution message arrives, the system first finds in the pool the corresponding previously

recorded limit order submission by comparing the order IDs. After matching the two orders

- incoming order and order stored in the order pool - the system records the remaining non-

executed size of the limit order or deletes the order from the order pool altogether if the

remaining size is zero. Finally, the system updates the LOB: the side in the LOB (bid or ask)

to be updated is determined by trade direction (buy or sell) of the corresponding order; the

level in the LOB is identified by the limit price; the new depth at this level is calculated by

deducting the size of the effective quantity.

The remaining issue is the construction of the initial-state of the LOB before the aforemen-

tioned procedure can be applied. Note that in the TotalView-ITCH message data, the order ID

of any limit order cancellation and execution message can always be found in a limit order sub-

mission message, which was recorded at an earlier time on the same trading day. This implies

that all limit orders valid overnight, such as some good-to-kill orders, have been resubmitted by

the system in the early morning. The NASDAQ trading system is in general open for new order

8

Figure 4: LOB reconstruction procedure. The algorithm employs an order pool to collect the limit order

information. When an “A” (or “F”) message comes in, it creates a limit order item in the order pool.

When subsequently a message comes in indicating limit order cancellation (“X” and “D”) or a limit

order execution (“E”), the information about the price and size of the original limit order is retrieved

from the order pool using common order ID.

9

instructions at 7:00 EST, even though continuous trading does not start until 9:30 EST. Be-

cause the TotalView-ITCH data set contains all messages, including messages submitted during

the pre-trading period, our algorithm initializes the reconstruction with an empty LOB at the

beginning of every day.

4.2 Implementation of LOB Constructor

As we discuss in Section 2, all TotalView-ITCH messages, except for messages containing limit

order submissions, contain only partial information about the underlying limit orders. In order

to update the order book, we need to “complete” the limit order information. Figure 5 shows

in details how this is done in case of messages containing limit order executions. After reading

an execution message, the system searches for the corresponding limit order inside the order

pool using the order ID. If the search is successful, the information on the remaining size of the

limit order is updated. The system then updates the LOB by changing the depth and quote on

the corresponding level. Finally, the new order book and the corresponding message item are

stored in the file system as output.

Figure 6 represents the final class diagram for our LOB Constructor. The system includes a

unique OrderBook and OrderPool instance, which are controlled via a unique BookConstructor

instance. After MessageReader objects reads a message from an external source, it creates a

Message object and then uses it to update the limit orders inside the OrderPool object as well

as quote and depth information in the OrderBook object according to the order event type. If

the process is successful, it saves the output using a MessageWriter and an OrderBookWriter

object. Note that the Reader and Writer are intent to be defined as abstract interfaces, rather

than concrete classes, for increasing the flexibility of the format of output data.

4.3 Output of LOB Constructor

The LOB Constructor generates two output data files; one file contains the LOB data and the

other one contains the corresponding order events. Table 2 shows a segment of reconstructed

three-level LOB data for Google Inc. (with ticker GOOG in NASDAQ). It includes quotes and

the corresponding depths up to the third best ask and bid, together with time stamps. The

other file contains the corresponding order event. As shown in Table 3, it has five fields:

• time: time stamp; milliseconds after mid-night.

• type: event type; 1 for limit order submission, 2 for partial cancellation, 3 for total

deletion, 4 for limit order execution, 5 for hidden order execution.

• order ID: a unique number assigned by the exchange for identification of orders.

• size: change of order size (in shares); for limit order submission it is the order size, for

order execution it is the trading volume and for limit order cancellation it is the cancelled

volume.

10

Figure 5: Sequential diagram for messages of limit order executions. The procedure begins with reading the message and creating a corresponding Message

object. The object then communicates with the order pool and updates information about the underlying limit order. Simultaneously, it retrieves from the

limit order any missing information, such as price. Using the complete information about the limit order, the Message object updates the order book state (the

OrderBook object). Finally, the constructor writes the updated order book state and the corresponding message into the file system using the OrderBookWriter

and MessageWriter objects.

11

Figure 6: Class diagram of LOB construction. A BookConstructor object contains unique OrderBook

and OrderPool objects, which are updated using incoming messages corresponding to Message objects.

Moreover, there must be at least one MessageReader object for reading the input, an OrderBookWriter

object and a MessageWriter object, which write the output into the file system.

12

Table 2:

LOB data generated by the LOB Constructor.

The sample contains a five second segment of three-level LOB data for ticker GOOG on July 1st 2009. The time variable is in milliseconds after the midnight.

Price is in 0.01 of a cent and size in number of shares. The corresponding order events that update the state of the LOB are shown in Table 3.

Time Ask Ask Bid Bid Ask Ask Bid Bid Ask Ask Bid Bid

price 1 size 1 price 1 size 1 price 2 size 2 price 2 size 2 price 3 size 3 price 3 size 3

36000043 4231100 100 4227300 300 4231200 100 4223000 100 4231300 300 4222900 100

36000044 4231100 100 4227300 300 4231200 300 4223000 100 4231300 300 4222900 100

36000207 4229100 100 4227300 300 4231100 100 4223000 100 4231200 300 4222900 100

36000208 4229100 100 4227300 300 4231100 100 4223000 100 4231200 100 4222900 100

36000208 4229100 100 4227300 300 4231100 100 4223000 100 4231300 100 4222900 100

36003222 4229100 100 4227300 300 4231100 100 4223000 100 4231200 100 4222900 100

36003471 4229100 100 4227300 300 4231100 100 4222900 100 4231200 100 4221200 100

36004005 4229100 200 4227300 300 4231100 100 4222900 100 4231200 100 4221200 100

36004009 4229100 200 4227300 200 4231100 100 4222900 100 4231200 100 4221200 100

36004009 4229100 200 4222900 100 4231100 100 4221200 100 4231200 100 4219100 400

36004009 4229100 200 4222900 100 4231100 100 4221200 100 4231200 100 4219100 400

36004010 4229100 200 4222900 200 4231100 100 4221200 100 4231200 100 4219100 400

36004010 4229100 200 4227300 200 4231100 100 4222900 200 4231200 100 4221200 100

36004011 4229100 100 4227300 200 4231100 100 4222900 200 4231200 100 4221200 100

36004015 4229100 100 4227300 200 4231100 100 4223300 100 4231200 100 4222900 200

36004016 4229100 100 4227300 200 4231100 100 4222900 200 4231200 100 4221200 100

36004017 4229100 100 4222900 200 4231100 100 4221200 100 4231200 100 4219100 400

36004018 4229100 100 4222900 200 4231100 100 4222800 200 4231200 100 4221200 100

36004018 4229100 200 4222900 200 4231100 100 4222800 200 4231200 100 4221200 100

36004018 4229100 200 4227300 200 4231100 100 4222900 200 4231200 100 4222800 200

36004020 4229100 200 4227300 200 4231100 100 4222900 200 4231200 100 4221200 100

36004020 4229100 100 4227300 200 4231100 100 4222900 200 4231200 100 4221200 100

36004021 4229100 100 4227300 200 4231100 100 4223300 100 4231200 100 4222900 200

36004025 4229100 100 4223300 100 4231100 100 4222900 200 4231200 100 4221200 100

36004025 4229100 100 4222900 200 4231100 100 4221200 100 4231200 100 4219100 400

13

Table 3:

Order event data generated by the LOB Constructor.

The sample contains a five second segment of order event (affecting the three-level LOB) data for ticker

GOOG on July 1st 2009. The time variable is in milliseconds after the midnight. The type variable

indicates the event type: submission, cancellation, execution of a limit order or execution of a hidden

orders. Order ID is the ID of the corresponding limit or hidden order. Size is the effective size, i.e. order

size for submission events and cancelled (executed) quantity for cancellation (execution) events. The

three-level LOB instances immediately after these order events are shown in Table 2.

Time Type Order ID Size Price Trade Direction

36000043 1 35859474 100 4231100 -1

36000044 1 35859503 200 4231200 -1

36000207 1 35862501 100 4229100 -1

36000208 3 35859503 200 4231200 -1

36000208 3 35603811 100 4231200 -1

36003222 1 35926475 100 4231200 -1

36003471 3 35293758 100 4223000 1

36004005 1 35948533 100 4229100 -1

36004009 4 35332615 100 4227300 1

36004009 4 35643198 200 4227300 1

36004009 5 35643169 200 4227300 1

36004010 1 35948820 100 4222900 1

36004010 1 35948851 200 4227300 1

36004011 3 35948533 100 4229100 -1

36004015 1 35949144 100 4223300 1

36004016 3 35949144 100 4223300 1

36004017 4 35948851 200 4227300 1

36004018 1 35949411 200 4222800 1

36004018 1 35949425 100 4229100 -1

36004018 1 35949469 200 4227300 1

36004020 3 35949411 200 4222800 1

36004020 3 35949425 100 4229100 -1

36004021 1 35949745 100 4223300 1

36004025 4 35949469 200 4227300 1

14

• price: the price of the limit order or the corresponding executed hidden order (in 0.01 of

a cent).

• trade direction: the trade direction of the corresponding limit (hidden) order; 1 for buy

limit order and −1 for sell limit order. Note that in case of order execution, 1 corresponds

to seller-initiated trade (i.e. execution against buy limit order) while −1 corresponds to

buyer-initiated trade (i.e. execution against sell limit order).

Both files can be easily loaded and used by analytical software, such as Matlab and R.

Because the number of output order events is identical to the number rows in the LOB (i.e.

both files have the same number of rows), the two output files can be easily merged. The

following is an example of R code for loading and merging the data set.

An Example of R Code Loading LOB Data

######### load data ########################

load order book data

dataOB <− read . csv (”GOOG 20090701 orderbook 3 . csv ”)

load message data

dataM <− read . csv (”GOOG 20090701 message 3 . csv ”)

merge two da ta s e t s

data <− cbind (dataM , dataOB [, −1])

####### load completed ###################

compute the number o f order book l e v e l s

n l e v e l s <− (dim(dataOB) [2] − 1)/4

name the columns

colnms <− c (”Time” , ”Type” , ”OrderID” , ” S i z e ” , ” Pr i ce ” , ”TradeDirect ion ”)

for (i in 1 : n l e v e l s)

{ colnms <− c (colnms , paste (”ASKp” , i , sep=””) , paste (”ASKv” , i , sep=””) ,

paste (”BIDp” , i , sep=””) , paste (”BIDv” , i , sep=””)) }

colnames (data) <− colnms

clean up

rm(’dataOB ’ , ’dataM ’)

4.4 Application: Visualization of LOB and Order Flow

The purpose of the LOB and order flow visualization is to help researchers intuitively understand

the basic principles of order-driven trading by showing a sequence of changes in the LOB

associated with the incoming order events. The upper left box in Figure 7 contains basic

information about the displayed ticker and current time, as well as a comment field, which

interprets the situation at the given point in time, thus helping to understand the principles

better. The box labeled “Order Flow” shows several orders around the current order (violet

color), as recorded in the corresponding output file. The box Limit Order Book (Table) box

contains rows from the LOB that correspond to the orders displayed in the Order Flow box. The

15

� The Order with type Hidden Execution and trade direction Sell
 at price 143.74$ has arrived.

Description

TICKER = APPLE, TIME = 10:00:50.036

Time
10:00:50.032
10:00:50.036
10:00:50.036
10:00:50.052

Type
Submission

Visible Exec
Hidden Exec

Deletion

OrderID
37315193
37280582
37315120
37315130

Size
100
 50
 50
100

Price
143.78
143.74
143.74
143.78

Trade
Sell
Buy
Buy
Sell

Order Flow

20 22 24 26 28

1
4
3
.
7
2

1
4
3
.
7
4

1
4
3
.
7
6

1
4
3
.
7
8

1
4
3
.
8
0

1
4
3
.
8
2

Tick time

P
r
i
c
e

Hidden Execution
Visible Execution
New Submission
Deletion

Snapshot of Order flow and LOB at 10:00:50.036 for 3 levels

BLevel 3
143.72(600)
143.71(1100)
143.71(1100)
143.71(1100)

BLevel 2
143.73(200)
143.72(600)
143.72(600)
143.72(600)

BLevel 1
143.74(50)
143.73(200)
143.73(200)
143.73(200)

ALevel 1
143.78(400)
143.78(400)
143.78(400)
143.78(300)

ALevel 2
143.79(153)
143.79(153)
143.79(153)
143.79(153)

ALevel 3
143.8(1800)
143.8(1800)
143.8(1800)
143.8(1800)

Limit Order Book (Table)

BID PRICE(BID SIZE) ASK PRICE(ASK SIZE)

143.72 143.74 143.76 143.78 143.80

5
0
0

1
0
0
0

1
5
0
0

Price($)

V
o
l
u
m
e

Limit Order Book (Graph)

BID ASK

Figure 7: The visualization of LOB and order flow. The time X-axis in the right graph does not correspond to the real time, but rather to “tick time”, i.e.

events in this graph are equidistant with respect to the X-axis regardless of their actual distance in time. The Y-axis “Price” is scaled realistically to represent

the actual quotes in the LOB. The current order event and LOB instance are highlighted by violet color in the left graph and by orange color in the right graph.

16

Limit Order Book (Table) box contains prices and depth (number of shares) at three levels of

bid and ask. The box with the title “Limit Order Book (Graph)” contains the same information

(for one row) visualized; depth (number of shares) at the three levels of displayed order book.

Note that this graph contains only the current state of the LOB corresponding to the violet row

in the previous two boxes. Finally, the large graph on the right displays the incoming orders

and the continuity of BID and ASK price levels against the time axis. Note that this graph

does not contain information about the size of incoming orders nor the cumulated depth. But

in combination, both graphs contain all information from the tables and thus provide current

snapshots, as well as the dynamics of the LOB in the sample period.

5 Order Tracer

We also implement a module called Order Tracer to extract information, i.e. cancellation,

execution and deletion, for single limit orders. The procedure is similar to the LOB Constructor.

5.1 Implementation of Order Tracer

Figure 8: Class diagram of trace construction. A TraceRecorder object contains unique OrderPool

objects, which are updated by incoming messages corresponding to the Message objects. Also, it must

include at least one MessageReader object for reading the input, a LimitOrderWriter object and a

TraceWriter objects for writing the output into the file system.

Reusing the classes designed for the LOB Constructor, we implement another application

by adding one additional controlling class - the TraceRecorder. It passes the message data

and completes information from the underlying limit orders exactly in the same way as the LOB

Constructor. However, rather than using the information to update the LOB, it simply records

the types of events and limit orders temporarily in a block of memory called tracePool. The

17

constructed data are then saved by instances of LimitOrderWriter and TraceWriter. Figure 8

contains our final class diagram.

5.2 Output of Order Tracer

Table 4:

Order event data generated by the Order Tracer.

The sample contains a segment of data for GOOG from October 1st 2010. The time variable is in

milliseconds after midnight. Size is the effective size, i.e. cancelled (executed) quantity of cancellation

(execution) events. Variable Execution indicates the type of event (execution or cancellation). Variable

Earlier exe. indicates the first execution by zero. The underlying limit order information is shown in

Table 5.

Submission Time Time Size Execution Earlier exe.

36502739 36502742 100 0 0

36502743 36502743 100 0 0

36502554 36502744 100 0 0

36502744 36502745 100 0 0

36502726 36502745 100 0 0

36502734 36502751 100 0 0

36502745 36502755 100 1 0

36502742 36502755 123 1 0

36502755 36502755 100 1 0

36502745 36502756 100 0 0

36502730 36502756 100 0 0

36502742 36502757 177 1 1

36502750 36502757 100 1 0

36502741 36502757 23 1 0

36502741 36502757 77 1 1

36502737 36502757 100 1 0

36502047 36502757 100 0 0

36502761 36502761 100 1 0

36502757 36502761 300 0 0

36502761 36502761 100 0 0

Similar to the LOB Constructor, the Order Tracer generates two files with the same num-

ber of rows. The first output file classifies events as cancellations or executions and contains

the following six columns (see a sample in Table 4).

• submission time: the time when the corresponding limit order was submitted; millisec-

onds after midnight.

• time: time stamp of the event; milliseconds after midnight.

• size: change of limit order size; number of shares.

18

• execution: a dummy variable indicating whether the event corresponds to a limit order

execution (1) or cancellation (0).

• earlier exe.: a dummy variable indicating whether the event corresponds to a limit

order that has been partially executed earlier (1) or not (0).

Table 5:

Limit order data generated by Order Tracer.

The sample contains a segment of data for GOOG from October 1st 2010. Variable Rem. Size is the

remaining share quantity of the limit order after an event. The Price variable is in 0.01 cent. Some

limit orders may contain additional MPID information identifying the submitters. Events recorded for

individual limit orders are shown on Table 4.

Order ID Order Size Rem. Size Price Trade Dir. Hidden MPID

57916505 100 0 5273000 1 0 null

57916618 100 0 5273100 1 0 null

57913456 100 0 5261200 1 0 HDSN

57916642 100 0 5273300 1 0 null

57916188 100 0 5271700 1 0 null

57916358 100 0 5271700 1 0 null

57916698 100 0 5273400 1 0 null

57916588 300 177 5273300 1 0 null

57916928 100 0 5273400 1 0 null

57916679 100 0 5273000 1 0 null

57916279 100 0 5221600 1 0 NMRA

57916588 300 0 5273300 1 0 null

57916814 100 0 5273300 1 0 null

57916545 100 77 5273100 1 0 null

57916545 100 0 5273100 1 0 null

57916448 100 0 5273000 1 0 null

57899910 100 0 5275100 -1 0 null

57917068 100 0 5273300 1 0 null

57917003 300 0 5265700 1 0 null

57917079 100 0 5275000 -1 0 null

The second output file contains information about the corresponding limit orders. Table 5

contains a segment of this file. There are seven variables:

• order ID: a unique number generated by the exchange identifying the limit order.

• order size: original order size at submission.

• remaining size: remaining size of the order after an order event.

• price: price of the limit order.

• trade direction: 1 for buy limit orders, -1 for sell limit orders.

19

• hidden: a dummy variable indicating whether the order is hidden (1) or not (0).

• MPID: Market Participant ID of the trader who submitted the order, null if unknown.

Since we organize the constructed data in such a way that the two output files contain identical

number of observations, we can easily load and merge them using statistical software, such as

Matlab and R. Here is an example of Matlab code.

An Example of Matlab Code Loading Order Trace Data

% load event data

t r a c e data=load (’GOOG 20101001 t r a c e . csv ’]) ;

% load order data

f i d=fopen ([’GOOG 20101001 order . csv ’]) ;

o rde r s=text scan (f id , ’%f ,%f ,%f ,%f ,%f ,%f ,%s ’) ;

fc lose (f i d) ;

order data=[o rde r s {1} orde r s {2} orde r s {3} orde r s {4} orde r s {5} orde r s { 6 }] ;

% merge the da ta s e t s

mydata=[traceData orderData] ;

% clean up

clear t r a c e data order data o rde r s ;

5.3 Application: Main Characteristics of Limit Orders

Figure 9 shows a simple analysis of the characteristics of limit orders using the output of the

Order Tracer. Calculation of the order sizes, execution quantities and life time of limit orders

are trivial tasks when using the data illustrated in Table 4 and 5. Nevertheless, we can make

a few interesting empirical observations: 1) Market participants submit a huge number of limit

orders with small sizes. Indeed, we find that most limit orders are of size 100, which is the size

of a round lot in NASDAQ. 2) Only a small proportion of limit orders are executed and the

execution quantity is small. 3) Most of limit orders are cancelled shortly after the submission.

4) Execution time is typically longer than cancellation time. More detailed analysis of order

flow properties and limit order characteristics can be found in Hautsch and Huang (2011a).

6 Conclusion

System LOBSTER is designed to meet the three basic requirements for constructing datasets

for empirical studies on limit order markets. First, it is sufficiently efficient and fast, requiring

only seconds or minutes to fulfill standard requests. The system is web-based and very intuitive

with a user-friendly interface allowing researchers to fully focus on research rather than spend

time preparing data. Third, the system was programmed using object-oriented programming

20

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

6

log
10

(order sizes)
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3
x 10

5

log
10

(executed sizes)

−4 −2 0 2 4 6
0

1

2

3

4

5

6

7
x 10

5

log
10

(cancellation time)
−4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

9
x 10

4

log
10

(execution time)

Figure 9: Histogram of size, execution quantity, cancellation time and execution time for limit orders.

The red line represents kernel density estimates. Zero cancellation time and execution are discarded.

Trading data for Microsoft Corp. on NASDAQ in October, 2010

21

language and intentionally designed to allow for easy extensions, which makes it very versatile.

New modules of the LOB Constructor and Order Tracer have been already added to the system.

Of course, any meaningful extension must be based on a sound research idea. To facilitate

communication with other researchers, we created a forum (http://lobster.wiwi.hu-berlin.

de/forum/) focused on modelling order book and order flow. It is a slowly but steadily growing

source of information, not only about LOBSTER, but about everything related to order-driven

markets. We expect that it will become a rich and comprehensive pool of references for academic

researchers, which will help them to accelerate the initial stages of their research projects and

help us further develop the system. The feedback we are receiving from students and researchers

pioneering with our system has already proven to be essential in the development of the system.

References

Hasbrouck, J., and G. Saar, 2009, Technology and liquidity provision: The blurring of traditional

definitions, Journal of Financial Markets 12, 143 – 172.

Hautsch, N., and R. Huang, 2011a, Limit order flow, market impact and optimal order sizes: Ev-

idence from NASDAQ TotalView-ITCH data, Discussion Paper 2011-056 Sonderforschungs-

bereich 649, Humboldt Universität zu Berlin, Germany.

, 2011b, On the dark side of the market: Identifying and analyzing hidden order place-

ment, Discussion paper Humboldt Universität zu Berlin, Germany.

22

